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J. Phys. A :  Gen. Phys., Vol. 5, November 1972. Printed in Great Britain. 0 1972 

Remarks on dissipative processes in the continuum theory of 
micromagnetics 

GERARD A MAUGINt 
Centre de Documentation de I’Armement, Ministry of National Defence, Paris, France 

MS received 13 April 1972 

Abstract. Dissipative processes resulting from magnetic spin-crystal lattice and spin-spin 
interactions are examined from the point of view of modern continuum mechanics in the 
theory of micromagnetics of deformable media. A formula which generalizes that of Gilbert 
and Kelley is derived for deformable solids. The corresponding heat conduction equation is 
obtained. 

1. Introduction 

It is well known that, in the macroscopic theory of magnetically saturated media referred 
to as micromagnetics, the magnetic spin p (or magnetization per unit mass) has a motion 
described by the equations 

where yo is the gyromagnetic ratio of an electron (yo = -lel/mc). The maxwellian 
magnetic field, the anisotropy field and the exchange forces which result from spin-spin 
interactions contribute to the effective or equilibrium field Bert Furthermore, in the 
case of a moving deformable material, the operator d/dt becomes the total time derivative 
of continuum mechanics and stress and deformation fields must be taken into account in 
the analysis. However, apart from the slight modification just mentioned, the form of 
equation (1.1) is not altered. In resume, if a magnetic moment p is considered to be 
attached to each material point in the solid specimen then, upon application of a magnetic 
field or tensions on the boundary of the specimen, the material point is displaced (de- 
formation) while the magnetic moment rotates about this point; this follows from equa- 
tion (1. l). The two phenomena are linked via the moment of momentum equation since 
the stress tensor is not symmetric. Such a phenomenological theory has been recently 
proposed by the author in collaboration with A C Eringen (Maugin and Eringen 1972a, b). 
A somewhat more concise outline including the relativistically invariant theory developed 
by Maugin and Eringen (1972~) will appear in book form (Maugin 1972a); some results 
have been enunciated in a brief note (Maugin 1971b). Other works developed in the 
same spirit are those of Tiersten (1964, 1965), Brown (1966) and Akhiezer et a1 (1967). 
Let us assume that the changes are slow or the frequencies low in many cases, thus 
peculiarly dynamical effects may be ignored ; the theory was so achieved in the frame of 

t Now at the Department of Theoretical Mechanics, Faculty of Science, University of Paris, France. 
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quasimagnetostatics with the currents neglected. Dissipative phenomena (although they 
have been investigated and their existence confirmed-for instance, in magnetic reson- 
ance, coherent rotation phenomena and domain wall propagation), were considered as 
exceptions as well as heat propagation and temperature fluctuations. Thus isothermal 
conditions were most often assumed since departure from these conditions would result 
in irreversibility and damping of the rotational motion of the magnetization (cf Brown 
1963, p 6). These dissipative phenomena are however important for practical applica- 
tions and deserve our attention (cf Q 2). It is therefore the aim of the present work to 
complement, still in the spirit of modern continuum mechanics, our preceding articles 
(Maugin and Eringen 1972a, b) especially as far as dissipation is concerned. 

A remark important for the following is in order. In our paper (Maugin and Eringen 
1972% note 48) that treated nonlinear constitutive equations, we wrote ‘it is of course 
possible to introduce very special forms of dissipation in a variational formulation for 
instance, through a Rayleigh function of dissipation.. . . However, to the knowledge of 
the authors, there exists no means to introduce dissipation in terms as general a s  the 
potential giving the recoverable parts of the nonlinear constitutive equations’. The last 
statement is apparently false since, of course, one can use Onsager’s relations in order to 
determine generalized forces linear in the fluxes, this within the framework of a linear 
constitutive theory. Furthermore, one can make use of the principle of least irreversible 
force established by Ziegler (1963) for the nonlinear constitutive theory. In some cases 
such as plasticity and viscoplasticity theories, the latter principle proved to be very useful. 
Although we shall base the forthcoming development on this principle, we ought to note 
that it is not generally accepted and some authors have serious objections on its general 
validity. 

In Q 2, we recall the physical background and review special types of dissipation like 
those considered by Gilbert and Kelley and Landau and Lifshitz. Notations and field 
equations previously derived are recalled in Q 3. Generalities such as the second principle 
of thermodynamics and the principle of least irreversible force of Ziegler are dealt with in 
0 4.1. Special types of dissipation which encompass forms previously known are studied 
in the two last paragraphs 4.2 and 4.3. 

2. Physical background 

The equation (1.1) describes a rotation of p with an angular velocity o = yOBeff in the 
plane formed by the magnetization p at the initial time t = to and the effective field Beff 
of the equilibrium configuration. The latter field we can write as (cf Maugin and Eringen 
1972a) 

Beff = B + B + p p 1 V . t  (2.1) 
where p is the matter density in the deformed configuration of the material, B is the 
maxwellian magnetic field (the solution to Maxwell’s equations for quasimagneto- 
statics), B is the anisotropy field and z is the spin-spin interaction tensor, a second order 
tensor which takes account phenomenologically of the interactions between neigh- 
bouring spins, an effect of quantum mechanical origin. In fact the rotation of the 
magnetization observed upon a perturbation or the switching on of an applied magnetic 
field does not take place in a plane. The motion of a magnetic spin is very much compli- 
cated by the influence of interactions with its surroundings. The magnetization spirals 
into parallelism with the effective field (cf Anderson 1968, p 180). It relaxes to its equilib- 
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rium position. This fact is accounted for as follows. The spiralling of the magnetization 
is a dissipative phenomenon similar to internal friction. The temperature fluctuations 
which are of stochastic nature give rise phenomenologically to a random field Brand 
whose statistical average is zero (cf Brown 1959). The equation (1.1) should therefore 
be modified to read 

(2.2) 

This is the Langevin equation of the magnetization motion. But, as is well known in the 
theory of brownian motion, the random force acting on a brownian particle is necessarily 
combined with a frictional force, a fact which represents a very general law of nature (in 
this regard, see the fluctuation-dissipation theorem in Kubo 1966). A possible friction 
term has been proposed by Gilbert and Kelley (1955). Adding this term to equation (2.2), 
with a a damping coefficient and a factor ,& ' introduced for dimensional convenience, 
the spin equation is written 

(2.3) 

The frictional force is related in some way to the random field Brand by the fluctuation-~ 
dissipation theorem. However, compared to the familiar theory of brownian motion of a 
free particle or a harmonic oscillator, the brownian motion of spin involves some com- 
plexities. The latter come from the quasi-nonlinear structure of equation (2.3). As 
emphasized by Kubo and Hashitsume (1970), a simple harmonic analysis cannot be 
employed since the magnetization is in general not linear in the stochastic field Brand. 
Even if the basic process Brand is assumed to be gaussian, that is, relatively simple, 
equation (2.3) is hard to solve. 

If we discard the stochastic field Brand, equation (2.3) still describes the approach of 
p to Beff in a sufficient realistic manner and is known to give a good description of loss 
mechanisms in a number of applications in ferromagnetic resonance (cf Anderson 1968, 
p 180). Thus 

(2.4) 

Another form of dissipation has been proposed earlier by Landau and Lifshitz 
(1935). For a certain approximation, their equation can be deduced from equation (2.4). 
Indeed, for small damping constant SI. we can replace in the last term of equation (2.4) 
by its value given by equation (1.1) and, setting p = - 8xy& 

(2.5) 

which is the Landau-Lifshitz equation where Beff contains in general nonlinear terms. 
The damping factor involved is determined by the environment of the magnetic spin. 
If interactions between electron spins and the crystal lattice are the predominant source 
of damping, the relaxation time r 1  which, according to the Einstein equation (cf Kubo 
and Hashitsume 1970), is given by the formula 

p = yo(B'"+ Brand)  x p. 

p = yo(Beff + B r a n d )  x p - zy0p's 'p x p. 

p = y0Beff x p - ayop; 1p x p. 

we obtain 

p = y0Beff x p + p(Beff x p) x p 

T~ = (2pke)-' (2.6) 

where k is the Boltzmann constant and 8 the thermodynamical temperature, is of the 
order of 10- ' sa t  78 K and lop2 s at 4.2 K. If spin-spin interactions predominate then T~ 

is of the order of to 10- l o  s and can be considered independent of temperature 
(cf Anderson 1968, p 180). In the former case, T '  increases with decreasing temperature. 

An equation such as equation (2.4) can be constructed with the help of a variational 
principle by introducing a special form of Rayleigh dissipation function (cf Maugin and 
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Eringen 1972% Maugin 1972a). It is the purpose of this work to show that, by applying 
general principles of continuum mechanics (second principle of thermodynamics, 
principle of least irreversible force, invariances), one can arrive at a similar equation. 
All we need to do is to study the dissipative parts of the constitutive equations. In 
particular, considering that 93 and t present additive recoverable and dissipative parts 

w = R&?+DB t = Rt+Dt (2.7) 

p = yo(B+Rw+p- 1 v. R t )  x p+yo(Dw+p- 'V . D t )  x p. 

equation (1.1) will read 

(2.8) 

Dealing with general dissipative processes, we also have to consider dissipative 
stresses and caloric dissipation which were excluded from our variational treatment 
(Maugin and Eringen 1972a). 

3. Notation and field equations 

3.1. Notation 

For the sake of simplicity, we use Cartesian coordinates. Capital and lower case italic 
indices take the values 1, 2 and 3. The summation convention on repeated indices is 
used throughout. We consider a material body (B) c E3, of boundary (8B) with unit 
exterior oriented normal n in the deformed (actual) configuration X((BR) and (aBR) in the 
undeformed (initial) configuration X,). x(xk) and X(X,)  are Cartesian eulerian and 
lagrangian coordinates in X and X, respectively. U(+k) is the velocity field and u(uk) is the 
displacement field. p and pR are the matter density in X and X, respectively. f(tkl) is the 
nonsymmetric stress tensor (thus the position of indices is important). E, q, II/ and h are 
the specific internal energy, the specific entropy, the specific free (Helmholtz) energy and 
the heat supply per unit mass respectively. q(4k) is the heat flux vector. Commas denote 
partial differentiation and the total time derivative is denoted by a superscript dot or a 
symbol d/dt, for example, 

dA . aA 
Xk,K - - = A = -++,A, ,  ax,' dt at (3.1) 

ci jk  is the permutation symbol ( e l z 3  = 1). Parentheses around a set of indices denote 
symmetrization while brackets denote alternation, for example 

where dk, is the rate of strain tensor and nkl is the vorticity tensor. 

3.2. Field equations 

We refer the reader to Maugin and Eringen (1972a) for the derivation of the following 
local field equations. They have been established in the frame of quasimagnetostatics, 
the currents being neglected, with no other volume forces than those of magnetic origin. 
The gyromagnetic effect is taken to be isotropic (magnetic spin proportional to an angular 
momentum). The set of field equations consists of the following. 
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(i) Conditions of saturation in (B)  and on (LJB) 

&uk = & = constant 

p k b k  = O, P k p k , K  = O. 
(ii) Field equations in the continuous region ( B )  : 

(a) conservation of mass 

(b)  conservation of momentum 

P ~ k  = t k l , l + P B l , k p l  

(c) conservation of moment of momentum 

= PB[kPll 

( d )  conservation of magnetic spin momentum 

pjL = pyoBeffxp 

(e) Maxwell’s equations 

V x B =  V x p p ,  V . B = O  

(f) energy equation 

Pc = t k l U k , l  + t k l b k , l  - P B k b k  + q k . k +  p h  
(g) entropy inequality 

P f l -  ( q d e ) , k  - (ph /e )  2 O. 

(iii) Field equations outside (B)  : that is, in vacuum 

(3.3) 

(3.5) 

(3.9) 

(3.10) 

V x B = O ,  V . B  = 0. (3.11) 

(iv) Boundary conditions on (8s) 

(3.12) 

(3.13) 

(3.14) 

with obvious notations. 
On (dBX, a part of (dB), the purely mechanical traction t k  is given. On (dB),, such that 

(dB),  U (dB), = (8B) and (LJB), n (LJB), = 4, the displacement u k  is prescribed. Cauchy’s 
data for the system given above are at t = t o  

P ( X ,  t = t o )  = P R ( X ) >  x k ( t  = = g k d X ?  WXK 
= = V ( 0 ) k ( X )  (3.15) 

P k ( X >  = t o )  = g k d X ,  X)pK(X),  /PI = PLS 

given where g k K ( x , X )  are shifters (cf Eringen 1967) equal to unity at t = to .  p K  is the 
initial configuration of p. The term h is given. 
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The number of components of the field unknowns p, U, r, p, B, t, r, 8 and q amounts to 
1 + 3 + 9 + 3 + 3 + 3 + 9 + 1 + 1 + 3 = 36, while the number of independent field equations 
valid in the continuous region (B) ,  equations (3.4) through (3.9), amounts to 
1 + 3 + 3 + 2 + 2 + 1 = 12. Therefore we need 24 supplementary equations to render the 
problem determined. These are provided by the constitutive equations (9 for t, 3 for 3, 
9 for t and 3 for q). 

4. Dissipative processes 

4.1. Generalities 

In this paragraph, we consider heat conducting nonlinear solids. To start with, the 
material symmetry is not specified. We examine the thermodynamical restrictions that 
follow from the local form of the second principle of thermodynamics (3.10). Firstly, 
however, we shall look at the equation of entropy production. Dividing equation (3.9) 
by 8 and re-arranging some terms, we get 

Differentiating the classical thermodynamical relation * = r - q e  

with respect to time, we obtain the second expression 

(4.1) 

,,e-ii = p e - l $ + p , i + p e - l q e .  (4.3) 

Eliminating i between equations (4.1) and (4.3) and introducing the recoverable and 
dissipative parts of the constitutive variables r, 3 and t by the relations 

t = Rr+Dr ,  a = Ra++a, t = Rt+Dt (4.4) 

p,i = y+q (4.5) 

we obtain the equation of entropy production in the form 

where the Jouguet and Clausius terms have been defined as (cf Germain 1967, Maugin 
1971a) 

in which the reversible entropy production p Rrj and the dissipation function per unit 
volume p4J are given by 

The first of these is identically equal to zero. Indeed we have shown in a preceding article 
(Maugin and Eringen 1972a) that the recoverable parts of the constitutive equations were 
derivable from a potential, the free energy density $. If the reversible behaviour of the 
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solid under consideration is of the nonlinear elastic (hyperelastic) type, taking 

$ = $ ( X k , K  ; p k  ; p k , K  ; 8 6 . K )  (4.9) 

and assuming independent dynamical processes (ie rates dkf , nkl, I . ik ,  fi,,,f, e and 8 , k ) ,  we 
obtained 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

Thus, 

p R Q  = 0, R = P 6  (4.14) 

Finally, on account of equations (4.5) and (4.14), the entropy inequality (3.10) yields 

P +  3 0 (4.15) 

with 4 given by equation (4.8). Upon using the decomposition of L'k,] in its symmetric 
and skewsymmetric parts, equations (3.2) and the result (3.6), we can write the dissipa- 
tion p 4  in the equivalent form 

(4.16) p e d  = D f ( k L ) d k l + D T k f f i k , l - P  D g k @ k - n l k p f ) - d -  ' 4 k d , k  

which, in turn, can be concisely written as 

P O 4  = %(P,%)  (4.17) 

where a(o),  (p )  = 1,. . . , 21 is the indexed series of independent components of the 
generalized fluxes whose set is formed by the quantities dk,, j i k , f ,  d , k  and M k ,  the latter 
being defined as 

M k  = f i k - 7 1 f k p i .  (4.18) 

x ( ~ , ,  (p)  = 1, . . . , 21 is the indexed series of independent components of the generalized 
irreversible forces whose set is formed by the quantities D t ( k , ) ,  D T k l ,  - pDgk and - q#. 

One can verify that the fields which constitute the set &, are objective, that is, their 
forms are invariant under frame transformations of the type (cf Eringen 1967, chap 5 )  

x* = Q(t)x + b(t), 

QQT = QTQ = I ,  

t* = t - a  

det Q = + 1 (4.19) 

in which Q(t)  is a proper orthogonal transformation in [E3, b(t) is a spatial translation and 
a represents a constant shift of time. 

Now we must determine the generalized irreversible forces. According to the axiom 
of equipresence (cf Eringen 1967, chap 7), they must depend on the same set of inde- 
pendent variables as the free energy I) (equation (4.9)) does, unless this is not allowed by 
some general principle. Moreover, they should depend on the generalized fluxes. 
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Therefore, we consider the behavioural laws 

(4.20) 

q k = q k ( .  ;. ;. ; . I .  ;. ;. ; .)  

which we assume to be at least of class C' with respect to their last four arguments. 
Then, the inequality (4.15) clearly implies that 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

That is, a generalized irreversible force vanishes whenever the corresponding generalized 
flux vanishes. 

Of importance for the following, is the principle of least irreversible force due to 
Ziegler (1963). In the n dimensional differentiable manifold V" of the thermodynamical 
variables qg), (p) = 1, . . . , n, the dissipation function 

P O 4  = Q,(&(g)) (4.25) 

represents, for each prescribed value of the rate &,p,, a hypersurface 

= M .  (4.26) 

Assuming that the process considered is quasistatic, that is, the changes of the generalized 
coordinates qg) and the temperature are sufficiently slow, the principle of least irrever- 
sible force states that : 

and the direction v ( ~ )  of the 
irreversible force ( x ( ~ )  = X V ( ~ ) )  are prescribed then, the actual quasistatic velocity &(g) 

minimizes the magnitude x of the irreversible force xts, subject to the condition 

A consequence of this principle is that the components of the irreversible forces are 

if the value M > 0 of the dissipation function 

cp(&(g)) 2 0. 

given by the relations (Ziegler 1963) 

(4.27) 

If Q, is homogeneous of degree N in the variables &(@) then Euler's theorem yields 

A = N - ' .  (4.28) 

The problem of finding the irreversible forces is then reduced to that of constructing 
an ad hoc function Q,. Therefore Q, plays, for the dissipative parts of the constitutive 
equations, a role equivalent to that played by the free energy $ for the recoverable 
parts. 
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The study of irreversible processes could be carried along in the generality provided 
by the relations (4.20) however, we shall content ourselves with simple cases of special 
interest. 

4.2. Magnetic spin-crystal lattice interactions 

Consider 

@ = @ l ( x k , K ;  FP ; p k , K  ; 

with, in agreement with the relations (4.21) through (4.24), 
0 , k )  f @2( . . . I“k ; e , k )  + @ 3 (  ‘ . . 1 f i k . l ;  e , k )  (4.29) 

(4.30) 

(4.31) 

(4.32) 

As a special case, we consider that for which equations (4.30) and (4.32) hold true. 
Thus (4.21) and (4.23) hold true. Moreover we take? 

@ = @(&e); e / ” k  ; e , k ) $  Ps = [PI. (4.331 

This means that irreversibility is mainly due to heat conduction and interactions 
between electron spins and the crystal lattice (see the physical significance granted to the 
field W in Maugin and Eringen (1972a), also Tiersten (1964)). The inequality (4.15) is 
now reduced to 

(4.34) 

Spatial isotropy requires the scalar function be dependent on its vectorial arguments 

- p  D g k M , - e -  ‘ 4 k 8 . k  3 0. 

only through their inner product (cf Eringen 1967, Appendix B.6) 

1,  = M k l v k ,  1 2  = l V k Q , k ,  I 3  = @ . k e , k .  (4.35) 

But, since k f k  is axial and the required invariance is that under the full orthogonal group, 
we must have 

- = 0. 
?@ 

8 1 2  
(4.36) 

We remark that, dealing with magnetic processes, we should also consider the time 
symmetry 9 (cf Maugin and Eringen 1972b, Maugin 1972a) as a required invariance. 
The final form of @ which follows from equations (4.33), (4.35) and (4.36), 

(4.37) 

a homogeneous function of degree NI and N ,  in M ,  and Oak respectively, satisfies this 
invariance since p changes sign with the current and hence with time. After (4.27), we have 

Q = w s ( e ) ;  8; 1, ;  U, 

(4.38) 

t The relation ps = p , ( O )  resorts to microscopic physics 
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A simple approximation to (4.37) is 

a) = 4 P s ,  Wl + B ( k ,  @ I 3  

with 

1559 

(4.39) 

(4.41) 

(4.42) 

= det(xk.K) = PR/P (4.43) 

which is the solution to the continuity equation (3.4). The inequality (4.34) is obviously 
verified. Equation (4.42) is Fourier's equation of conduction with IC the conduction 
coefficient. a is nothing but the damping coefficient referred to in Q 2. Indeed carrying the 
second of the expressions (4.4) in equation (3.7) and taking account of the results (4.41) 
and the definition (4.18), we obtain (T = transposed) 

p = yo(B+RW+p-'V.  R ~ )  x p - u ( p s ,  8)&'yoJ{p xp-(nT.  p) xp). (4.44) 
This is Gilbert and Kelley's equation generalized to deformable media since, if there 

were no deformation 

J = 1, n = o  (4.45) 

equation (4.44) would reduce to 

fi = yo RBeff x p - a(ps,  e)yop; 'p x p. (4.46) 

Landau and Lifshitz's equation would then be obtained by the approximation men- 
tioned in Q 2. We remark that the dissipation function, 

= Up; ' P R M k M k ,  (4.47) 

is very similar to the Rayleigh dissipation function considered by Gilbert and Kelley 
(1955, see also Brown 1963). 

4.2.1. Remark. Clearly, the principle of least irreversible force used above is a generaliza- 
tion of Onsager's relations which, in contrast to the present principle deal exclusively 
with linear processes. A direct application of Onsager's relations would, of course, 
yield results identical to those of equations (4.41) and (4.42). In fact, these relations re- 
quire that 

- p Dak = A k & f ,  

-8-'qk = Bk,8,1 

and isotropy gives, 6 k I  being the unit tensor, 

(4.48) 
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Taking 

A = CLPC ' ~ R I  B = K O -  ', 
we obtain equations (4.41H4.42). The identity with Onsager's procedure started with the 
approximation (4.39). Speculations on more general forms of the expression (4.37) 
would certainly bring interesting new features. 

4.3. More complex dissipative phenomena 

Following the scheme proposed in 0 4.1, we may consider more involved irreversible 
phenomena. In particular, if we do not take the function CD, of equation (4.29) equal to 
zero, we may construct stress constitutive equations for a class of viscoelastic solids 
(eg, see the works of Gorodtsov and Leonov 1968 and Piau 1970). However we are 
mainly interested here in magnetic phenomena. Hence we keep CDl equal to zero. 

In agreement with the physical significance given to the tensor t (cf Maugin and 
Eringen 1972a, Tiersten 1964 and Brown 1966), if spin-spin interactions are the pre- 
dominant source of dissipation and relaxation of the spin, we can take 

CD2 = 0 

and write 

@ = @(. i .  ; .  ; . l f i k , [ ; 0 , k ) .  (4.50) 

More specifically, 

@ = @ M O ) >  O , I , ?  14) (4.5 1) 

which is a homogeneous function of degree N ,  and N4 in e,k and f i k . 1  respectively. It is a 
scalar invariant under the group of transformations (4.19). We have defined 

I4 = f i k . 1 f i k . l .  (4.52) 

(4.53) 

(4.54) 

in which 6 has the same dimension as the damping coefficient c i  of 0 4.2. L is a characteris- 
tic length, for instance, the lattice constant or either a typical magnetic domain size or the 
thickness of a Bloch wall. According to a remark made in 0 2, in the present case, re- 
laxation phenomena are quite independent of temperature. Therefore 6 is taken to be 
independent of 8. We then have 

(4.55) 

hence 

(4.56) 
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Carrying the first of these expressions in equation (3.7), we obtain the spin equation when 
spin-spin interactions provide the largest part of dissipation 

(4.57) 

where V2 is the Laplacian. For rigid solids, J = 1 (cf equation (4.45)). 
Finally, if we consider dissipation which results from both spin-crystal lattice and 

spin-spin interactions, taking the following simple dissipation function quadratic in the 
generalized fluxes : 

(4.58) 

yo 'p = ( B + a + p -  'v . R z )  x p++(ps)pi  'JLZ(v2p) x p 

@ = 4 P s  9 6)I 1 + B(Ps 9 w 3  + C(PSU4 

we will obtain the complicated spin equation in deformable media 

y; 1p = ( B + R B + ~ -  1v. ~ t )  x p-u(ps ,  elpi ~ ( p  x p - ( n ~ .  p) x pl 
+ +(P& 'JL2(V2P) x CI (4.59) 

while the heat conduction law will assume Fourier's form (cf equation (4.56, part two)). 
The equation of heat propagation which corresponds to the spin equation (4.59) is 
established by the usual method (cf Eringen 1967, p 179). Replace 1 in equation (3.9) by 
its value given by equation (4.3). Then, with given by equation (4.9) subject to the 
restriction provided by the second of equations (4.13), compute q from the definition 
(4.13, part one) of q. One obtains 

(4.60) 

The right hand side of equation (3.9) is transformed by the aid of equations (4.4) and 
the results (4.10H4.12) and (4.56). One readily gets the final result 

9 is the parabolic differential operator defined as 

with 

d e f  a2$ c, = e- > 0, 
a e 2  

IC > 0. 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

c h  is the specific heat at constant deformation, magnetization and magnetization gradient 
fields; ( K / p C h )  is the thermal diffusibility. Equation (4.61) is the equation of heat propa- 
gation in a magnetically saturated nonlinear elastic solid with linear dissipation of micro- 
magnetic origin (no mechanical dissipation, cf equation (4.58)). 
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5. Conclusion 

It remains to determine experimentally or from a microscopical approach the value of 
the unknown coefficients M and 6 and to show that equation (4.59) provides a good 
description of the approach of p into parallelism with the field Befr. This can only be 
achieved by comparing the theory given here with experimental results. 

In a forthcoming publication (Maugin 1972c), we shall study dissipative phenomena 
in the relativistically invariant theory of micromagnetism developed by Maugin and 
Eringen (1972~) (also Maugin 1972b) by using relativistic thermodynamics (cf Maugin 
197 1 a). 
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